Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(1R,3R,4S)-1-Benzyl-3-(tert-butyl-dimethylsilyloxy)-4-(hydroxymethyl)-pyrrolidine-borane: novel B—H $\cdots \mathrm{H}-\mathrm{O}$ hydrogen bonding

Graeme J. Gainsford,* Andreas Luxenburger and Anthony D. Woolhouse
Carbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand 5010
Correspondence e-mail: g.gainsford@irl.cri.nz

Received 15 June 2010
Accepted 7 July 2010
Online 15 July 2010
The absolute configuration of the title cis- $(1 R, 3 R, 4 S)$-pyrro-lidine-borane complex, $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{BNO}_{2} \mathrm{Si}$, was confirmed. Together with the related trans isomers $(3 S, 4 S)$ and $(3 R, 4 R)$, it was obtained unexpectedly from the $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ reduction of the corresponding chiral $(3 R, 4 R)$-lactam precursor. The phenyl ring is disordered over two conformations in the ratio $0.65: 0.35$. The crystallographic packing is dominated by the rarely found donor-acceptor hydroxy-borane $\mathrm{O}-\mathrm{H} \cdots \mathrm{H}-\mathrm{B}$ hydrogen bonds.

Comment

During the course of our efforts to synthesize the two pairs of enantiomeric 3-O-TBDMS-protected (TBDMS is tert-butyldimethylsilyl) 1-benzyl-3-hydroxy-4-(hydroxymethyl)pyrrolidine scaffolds by reduction of the corresponding enantiomeric pairs of lactam esters (Clinch et al., 2007) with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, we recovered, unexpectedly, only the borane-complexed pyrrolidine derivatives as stable low-melting waxy solids. From the reduction of the (+)-cis lactam ester (see reaction scheme below), we were able to isolate the corresponding boranecomplexed pyrrolidine title compound, (I), as large colourless

crystals. As a result of this particular reaction, only a single compound was isolated as was evinced from the appearance of a single resonance in the ${ }^{11} \mathrm{~B}$ NMR spectrum and the appearance of a single peak in the chiral-phase HPLC chromatogram. In contrast, the borane complexes isolated from the reductions of the trans-lactams were also isolated as chromatographically homogeneous compounds but were
shown to be diastereoisomeric, presumably as a result of the capture of each of the pyrrolidino 'invertomers'. In the ${ }^{1} \mathrm{H}$ and ${ }^{11}$ B NMR spectra and in chiral-phase HPLC chromatograms, the ratios of the diastereoisomers were essentially consistent (at $\sim 2: 1$).

(I)

The crystal structure of the title $(-)$-cis borane complex is interesting in that, in binding the borane residue from the lesshindered face, the N-benzyl group is forced into a configuration syn to the substituents at C 3 and C 4 . A similar phenomenon has been observed in the formation of the borane complex (adduct) with (S)- N -benzylproline methyl ester (Ferey et al., 1996). Here, the N-boronato group and the carboxylate functionality at C 2 are cis to each other, a configuration that relieves any potentially unfavourable interaction with the benzyl group.

The asymmetric unit of the title compound, (I), contains one independent ($1 R, 3 R, 4 S$)-1-benzyl-3-(tert-butyldimethylsilyl-oxy)-4-(hydroxymethyl)pyrrolidine-borane molecule (Fig. 1). As shown in Fig. 1, the phenyl ring (C6-C11) is conformationally disordered in two orientations [in the ratio $a: b$ of 0.65 (2):0.35 (2)]; the rings were refined as rigid bodies $(\mathrm{C}-\mathrm{C}=1.390 \mathrm{~A})$. The data would not support refinement of two independent sites for atom C 1 . The pyrrolidine ring adopts a twist ring conformation on $\mathrm{C} 3-\mathrm{C} 4$, with $Q(2)=$

Figure 1
The contents of the asymmetric unit of (I), showing all atoms with displacement ellipsoids at the 30% probability level. The two phenylgroup orientations [labelled as a and b sets with occupancies of 0.65 (2) and 0.35 (2), respectively] are distinguished by full and dashed bonds. For the sake of clarity, only one set of H atoms on atom C 1 is shown (see Comment).

Figure 2
A Mercury packing view (Macrae et al., 2008) of the cell highlighting the unusual $\mathrm{B}-\mathrm{H} \cdots \mathrm{H}-\mathrm{O}$ major hydrogen bond (dotted). Only selected H atoms involved in packing are shown in ball mode (see Table 1). [Symmetry codes: (i) $-x, \frac{1}{2}+y, \frac{3}{2}-z ;$ (ii) $\frac{1}{2}-x, 1-y, z-\frac{1}{2}$; (iii) $\frac{3}{2}-x, 1-y$, $\left.z-\frac{1}{2} \cdot\right]$
0.414 (2) \AA and $\varphi=271.5$ (3) ${ }^{\circ}$ (Cremer \& Pople, 1975). The absolute configurations are confirmed to be $\mathrm{N} 1(R), \mathrm{C} 3(R)$ and $\mathrm{C} 4(S)$, as expected from the synthesis, with a Hooft y parameter of 0.11 (6) (Hooft et al., 2008).

Lattice binding is provided by unusual $\mathrm{B}-\mathrm{H} \cdots \mathrm{H}-\mathrm{O}$ hydrogen bonds (Table 1 and Fig. 2), in which the borane H atoms act as acceptors, generating what would be a $C(8)$ binding motif (Bernstein et al., 1995). This combination of hydroxy H -atom donors and borane H -atom acceptors is rarely observed; the one example located has two bifurcated $\mathrm{O}-\mathrm{H}$ (weaker) interactions to both borane H atoms in (1R,2S,7S,7aS)-1,2-dihydroxy-7-(4-methoxybenzoyloxy)hexa-hydro- $1 H$-pyrrolizine-borane [Cambridge Structural Database (CSD; Allen, 2002) refcode ABUKAJ (Blakemore et al., 2001)], generating two $C(7)$ motifs. This interaction does not appear to have affected the molecular bonding significantly, with a $\mathrm{B}-\mathrm{N}$ bond length of 1.625 (3) \AA compared with 1.637 (3) and $1.633 \AA$, respectively, in the related compounds (1R,2S)-1-(boryldiphenylphosphanylethyl)-1-boryl-2-(boryldiphenylphosphanylmethyl)pyrrolidine (TUSSOP; Lam et al., 2002) and N-benzyl- N-boranylproline methyl ester (TUHJEL; Ferey et al., 1996). We have previously noted the related (nitrogen equivalent) $\mathrm{B}-\mathrm{H} \cdots \mathrm{H}-\mathrm{N}$ strong lattice binding in amine-boranes [e.g. propylamine-borane; CSD refcode SOYTOQ (Gainsford \& Bowden, 2009)]. A weak C $-\mathrm{H} \cdots \pi$ interaction is also present (see Table 1), which has not prevented the observed conformational disorder in the ring.

Experimental

To an argon-blanketed solution of the (+)-silylated lactam ester $(19.1 \mathrm{~g}, 50.7 \mathrm{mmol})$ in dry tetrahydrofuran $(230 \mathrm{ml})$, cooled in an ice
bath, was added $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(25 \mathrm{ml}, 253.5 \mathrm{mmol})$ dropwise over a period of about 10 min . The solution was warmed to 341 K and maintained as such for 16 h before being cooled (in ice) and quenched with excess methanol. The solution was concentrated and then fractionated by flash column chromatography on silica ($10-20 \%$ ethyl acetate/hexane) to give the (+)-pyrrolidine (yield $9.38 \mathrm{~g}, 57 \%$) as a colourless solid [m.p. 353 K (uncorrected), $[\alpha]_{D}^{23}+29.4$ (c 0.895, MeOH)]. FT-IR (neat): $v_{\text {max }} 3505(\mathrm{OH}), 2953,2931,2883,2857,2406$, $2322\left(\mathrm{BH}_{3}\right), 2267\left(\mathrm{BH}_{3}\right), 1464,1252,1163(\mathrm{~N}-\mathrm{B}), 1083,1063,1049$, 1025, 1010, 978, 933, 903, 868, 837, 821, 803, 774, 701, $669 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-7.36(m, 5 \mathrm{H}), 4.82(q, 6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.06 (ABq, $12.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.83 ($d t, 12.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53-3.48 (m, $1 \mathrm{H}), 3.39(d d, 10.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(t, 10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(m, 1 \mathrm{H})$ 2.91-2.84 (m, 1H), 2.66 (dd, 10.6, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(d d, 9.8,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 0.88(s, 9 \mathrm{H}), 0.11(s, 3 \mathrm{H}), 0.07(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 132.58,131.35,129.03,128.20,72.92,67.46,67.14,60.23$, $59.39,41.78,25.70,17.85,-4.76,-5.18 .{ }^{11} \mathrm{~B}^{\mathrm{NMR}}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta-10.3$. HR ESMS: $M \mathrm{H}^{+} m / z=322.2197, \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}$ Si requires $322.2202, \Delta 1.6$ p.p.m.; $M \mathrm{Na}^{+} m / z=344.2021, \mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{SiNa}$ requires $344.2022, \Delta 0.3$ p.p.m.; $M \mathrm{BH}_{3} \mathrm{Na}^{+}=358$ a.m.u. Microanalysis (\%) found: $\mathrm{C} 64.69, \mathrm{H} 10.76, \mathrm{~N} 4.17 ; \mathrm{C}_{18} \mathrm{H}_{34} \mathrm{BNO}_{2}$ Si requires: C 64.48 , H 10.15, N 4.18 .

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{BNO}_{2} \mathrm{Si}$
$M_{r}=335.36$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.8078$ (7) \AA
$b=11.2328$ (10) \AA
$c=23.639(2) \AA$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.418, T_{\text {max }}=0.746$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.134$
$S=1.07$
4901 reflections
225 parameters
1 restraint

$$
\begin{aligned}
& V=2073.2(3) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=113 \mathrm{~K} \\
& 0.65 \times 0.60 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

42018 measured reflections
4901 independent reflections 4409 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.089$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.63 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.44 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 2102 Friedel pairs
Flack parameter: 0.07 (13)

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
Cg1 is the centre of the C6a-C10a phenyl ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{H} 1 B 1^{\mathrm{i}}$	$0.89(3)$	$1.76(4)$	$2.62(2)$	$162(3)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cg} 1^{\mathrm{ii}}$	1.00	2.78	$3.662(3)$	147

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $x-1, y, z$.

Two low-angle reflections affected by the backstop were removed from the refinement. Conformational disorder involving phenyl plane orientations was modelled via linked occupancies of two rigid hexagonal phenyl groups $(\mathrm{C}-\mathrm{C}=1.390 \AA$, atoms $\mathrm{C} 6-\mathrm{C} 11$; see Fig. 1): final occupancies for the $a: b$ set were 0.65 (2):0.35 (2). Each a, b set of

organic compounds

phenyl-group C atoms was refined with the same anisotropic displacement parameters [using the EADP function in SHELXL97 (Sheldrick, 2008)]. The data would not support two independent sites for atom C 1 ; two sets of bound H atoms ($\mathrm{H} 1 A / \mathrm{H} 1 B$ and $\mathrm{H} 1 C / \mathrm{H} 1 D$) were calculated, given a, b occupancies as appropriate and fixed positionally. The $\mathrm{C} 1-\mathrm{C} 6 a$ and $\mathrm{C} 1-\mathrm{C} 6 b$ distances were restrained to be equal (SADI function in SHELXL97, with an effective standard deviation of $0.005 \AA$). The borane and hydroxy H atoms were located in difference Fourier maps and refined with isotropic displacement parameters.

The methyl H atoms were constrained to an ideal geometry $(\mathrm{C}-\mathrm{H}=0.98 \AA)$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but were allowed to rotate freely about the adjacent $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 1.00 (primary), 0.99 (methylene) or $0.95 \AA$ (phenyl). The phenyl H atoms were refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ and the remainder with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT and SADABS (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

This work was supported by a New Zealand Foundation for Research Science and Technology contract No. C08X0711. We thank Dr J. Waikara of the University of Canterbury for her
assistance and New Zealand Pharmaceuticals Ltd for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3351). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Blakemore, P. R., Kim, S.-K., Schulze, V. K., White, J. D. \& Yokochi, A. F. T. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1831-1845.

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2005). APEX2 (Version 2.0-2), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
Clinch, K., Evans, G. B., Furneaux, R. H., Lenz, D. H., Mason, J. M., Mee, S. P. H., Tyler, P. C. \& Wilcox, S. J. (2007). Org. Biomol. Chem. 5, 2800-2802.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ferey, V., Vedrenne, P., Toupet, L., Le Gall, T. \& Mioskowski, C. (1996). J. Org. Chem. 61, 7244-7245.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gainsford, G. J. \& Bowden, M. E. (2009). Acta Cryst. E65, o1395.
Hooft, R. W. W., Straver, L. H. \& Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.
Lam, H., Cheng, X., Steed, J. W., Aldous, D. J. \& Hii, K. K. (2002). Tetrahedron Lett. 43, 5875-5877.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

